Free-Radical Addition-Fragmentation Reactions in Synthesis: A "Second Generation" Synthesis of (+ **)-Pseudomonic Acid C**

Gary E. Keck* and Ahmed M. Tafesh

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received September 25, 1989

Summary: A highly convergent approach to $(+)$ -pseudomonic acid C, which utilizes a free-radical addition-fragmentation process as the key step, has been demonstrated.

Sir: The pseudomonic acid family of antibiotics,' such **as** pseudomonic acids A, B, C, and D, have attracted intense synthetic interest² due to their unusual structures and mode of action.³ Of these substances, pseudomonic acid C **(4)** is perhaps the most promising for further development, as the pseudomonic acids possessing a $C_{10}-C_{11}$ epoxide function are rapidly deactivated in vivo.⁴ We have previously reported a total synthesis of pseudomonic acid C^{2h} in which stereoselective free-radical allylation⁵ played a key role. We now describe a much more convergent approach to this material in which the entire $C_9 - C_{14}$ appendage is added to the pyranose core of pseudomonic acid C in a single step and with an extremely high level of stereoselectivity. The approach is outlined antithetically in **eq** 1 below. Thus is was envisioned, based upon previous work from our laboratory,⁶ that a suitably functionalized allyl fragment 5, with $X =$ SPh, SOPh, or SO₂Ph, could be coupled via an addition-fragmentation mechanism with a carbon-centered radical derived from iodide **6;** a process which would not be expected to be efficient using a stannane of general structure **5.'**

(2) For previous syntheses, note: (a) Snider, B. B.; Phillips, B. G.; Cordova, R. J. Am. *Chem.* SOC. **1982,104,1113.** (b) Jackson, R. F. W.; Raphael, R. A.; Stibbard, J. A. A.; Tidbury, R. C. J. *Chem. SOC., Perkin* Trans. **1 1984,2159.** (c) Hutchins, R. *0.;* Kandasamy, C. A. *J.* Org. Chem. **1978,43, 2259.** (d) Kozikowski, A. P.; Schmiesing, R. J.; Sorgi, K. L. J. *Am. Chem.* SOC. **1980,102,6577.** (e) Fleet, G. W. J.; Gough, M. J.; Shing, T. K. M. Tetrahedron Lett. **1983,34,3661. (f)** Beau, J. M.; Aburuki, S.; Poughy, J. R.; Sihay, P. J. Am. Chem. Soc. 1983, 105, 621. **(g) Keck**, G. E.; Kachensky, D. F.; Enholm, E. J. J. *Org. Chem.* **1984,49, 1462.** (h) Keck, **G.** E.; Kachensky, D. F.; Enholm, E. J. J. Org. *Chem.* **1985,50,4317.** (i) Kozikowski, A. P.; Sorgi, K. L. Tetrahedron Lett. **1984,25,2085.** *6)* Bates, H.; Farina, J.; Tong, M. *J.* Org. *Chem.* **1986,51,2637.** (k) Williams, D. R.; Moore, J. L.; Yamada, M. *J.* Org. *Chem.* **1986,51,3916.** (i) Barrish, J. C.; Lee, H. L.; Baggiolini, E. G.; Uskokovic, M. R. *J.* Org. Chem. **1988, 52, 1372.** (m) Rao, V. M.; Nagarajan, M. *J.* Org. *Chem.* **1988,53,1432.** (n) White, J. D.; Theramongkol, P.; Engebrecht, J. R.; Kuroda, C. J. *Org. Chem.* **1986,51, 956.**

(4) Clayton, P. J.; Oliver, R. S.; Rogers, N. H.; King, T. J. J. *Chem.* SOC., Perkin Trans. **1 1979, 838.**

(5) (a) Keck, G. E.; Yates, J. B. *J.* Am. *Chem.* SOC. **1982,104,5829.** (b) Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. Tetrahedron Symp. **1985,41, 4079.**

(6) Keck, G. E.; Byers, J. H. J. Org. *Chem.* **1985,51, 2487.**

(7) Keck, G. E.; Yates, J. B. J. Organomet. Chem. 1983, 248, C21-C25.

Preparation of the iodide **6** (note Scheme I) began with the known^{2h} 1-*O*-benzyl-2,3-isopropylidene-L-lyxopyranose **8a.** Since previous work from our laboratories had demonstrated that the sole free hydroxyl in **8a** could not be converted to halogen or selenylphenyl,^{2h} an indirect approach was necessary? Exposure of **8a** to methanesulfonyl chloride in pyridine at 23[°]C gave the corresponding mesylate **8b,** which was treated with 1:l 1 N HCl/THF **to** give diol **9** in 87% overall yield from **8a.** Epoxide formation to yield **10** was accomplished in 96% yield by treatment of **9** with potassium tert-butoxide in THF at room temperature for 30 min. Reaction of **10** with 2.0 N HI in acetone at reflux, followed by conversion of the resulting vicinal diol to the corresponding acetonide derivative (dimethoxypropane, pTsOH, acetone), furnished the desired iodide **6** in 85% overall yield from

The synthesis of sulfone **5c** is outlined in Scheme **11.** The route began with the known,^{2h} readily available ester **11** (utilized in our previous route), which was homologated to allylic alcohol **12** in a one-pot operation (65% yield) via reduction and in situ Emmons reaction according to the Takacs protocol,¹⁰ followed by the addition of 2.1 equiv of (iBu)₂AlH and workup (methanol, then saturated aqueous Rochelle salt). Conversion of **12** to sulfone **5c** was initiated by [2,3] sigmatropic rearrangement of the derived sulfenate (1.0 equiv of n -BuLi, THF, 0 °C; PhSCl) via the

⁽¹⁾ (a) Fuller, A. T.; Mellows, G.; Woodrof, M.; Banks, G. T.; Barrow, K. D.; Chain E. B. Nature **1971,234,416.** (b) Basker, M. J.; Cober, K. R.; Clayton, J. P.; Hannon, P. C.; Mizen, L. W.; Rogers, N. H.; Slocombe, B.; Sutherland, R. *Curr.* Chemother. Infect. *Dis.;* Proc. Intl. Congr. Chemother. *11th* **1979,** I, **471.** (c) Hughes, J.; Mellows, G. Biochem. *J.* **1978,176,305.** (d) Bader, A,; Garre, C. Corresp. *B1.* Sdchweiz. Aerztyc. **1887,17,385.** (e) Chain, E. B.; Mellows, G. J. *Chem.* Soc., Perkin Trans. **1 1977, 294.**

⁽³⁾ (a) OHalon, P. J.; Roberta, N. H.; Tyler, J. W. J. *Chem. SOC.* Perkin Trans. **1 1983, 2655.** (b) Bactoroban, Proceedings of an International Symposium; Dobson, R. L.; Leyden, J. J.; Noble, W. C.; Price, J. E., **EMS.;** excerpta Medica: Amsterdam, The Netherlands, **1985;** pp 7-8. (c) Crimmin, M. J.; OHalon, P. J.; Rogers, N. H. *J.* Chem. SOC., Perkin Trans. **1 1985, 549.**

⁽⁸⁾ Our previous experiences^{2h} regarding the difficulty of such displacement reactions were reconfirmed in the course of this work. Also in accord with previous experience? thionocarbonates derived from **8a** were found to be unsatisfactory in the free-radical reactions described herein.

⁽⁹⁾ The corresponding bromide can also be prepared in high yield using a parallel process; however, initial results on coupling reactions using this substrate were not encouraging. **(10)** Takacs, J. M.; Helle, M. A.; Seely, F. L. Tetrahedron Lett. **1986,**

^{27,} 1257.

general procedure of Evans,¹¹ followed by oxidation with Oxone¹² to give the desired sulfone as a ca. 2:1 mixture of e pimers. 13

The desired one-electron union of 5c and **6** proved much more difficult than anticipated and required scrupulous attention to experimental detail for success. For example, exhaustive investigation using chemical initiation with initiators such as AIBN **or** ACN14 at 80-110 "C in the

(11) Evans, D. A.; Andrews, G. L. *Acc. Chem. Res.* **1974, 7147. (12)** Trost, B. **M.;** Curran, D. P. *Tetrahedron Lett.* **1981,** *22,* **1287.**

presence of 1.0 equiv of hexabutylditin⁶ failed to afford detectable amounts of the desired coupling products. Failure was also encountered using the Hart protocol¹⁵ with initiation from stoichiometric amounts of bis(trimethy1 stannyl) benzopinacolate.

Better results were obtained using photochemical initiation. For example, when a mixture of 3 equiv of sulfone 5c, 1 equiv of iodide **6,** and 1.5 equiv of hexabutylditin in toluene was irradiated (450-W Hanovia lamp with Pyrex filter) for 12 h, **20%** of the desired addition product was isolated, along with 60% of the product of simple reduction of iodide **6** and allylically transposed sulfone. Finally it was found that slow addition (syringe pump) of a THF solution $(0.54 \text{ M} \text{ in } 5c)$ of 1.0 equiv of sulfone $5c$ and 0.5 equiv of hexabutylditin to an irradiated solution of 1.0 equiv of iodide **6** and 0.5 equiv of hexabutylditin (0.54 M in THF) under argon afforded the desired coupling product **7a** in 74% isolated yield (note eq 1).

NMR analysis indicated a 13:1 mixture of trans/cis $C_{10}-C_{11}$ geometric isomers. Reductive cleavage (Li, $NH₃$) (1), THF) of the benzyl group gave the α -lactol 7b, which was spectroscopically indistinguishable **('H** NMR, 13C NMR, HRMS) from material previously prepared in our laboratories and subsequently converted to (+)-pseudomonic acid C.^{2h} HPLC analysis of the UV-active 1-Obenzoyl derivative again revealed a 13:l mixture of trans/cis $C_{10}-C_{11}$ geometric isomers. Isomeric substances resulting from incomplete facial selectivity in construction of the \tilde{C}_8 stereogenic center were not detected.

The successful realization of a "second generation" total synthesis of $(+)$ -pseudomonic acid C according to the free-radical addition-fragmentation process described herein again demonstrates the power of such reactions in organic synthesis¹⁶ and also suggests that such reactions will find continuing application.

Acknowledgment. Financial support of this research by the NSF (Grant CHE 8312729) is gratefully acknowledged.

Supplementary Material Available: Full experimental details and spectral and physical data for compounds described herein (24 pages). Ordering information is given on any current masthead page.

Palladium-Catalyzed Polyene Cyclizations of Trienyl Triflates

Nancy E. Carpenter, David J. Kucera, and Larry E. Overman*

Department of Chemistry, University of California, Irvine, Iruine, California 9271 7

Received August 10, 1989

Summary: Spirotricyclic dienones are conveniently prepared by palladium-catalyzed cyclizations of enol triflate derivatives of 2-dienyl-1,3-cyclohexanediones. The use of chiral (nonracemic) ligands allows assembly of these products with moderate enantioselectivity, demonstrating a potentially powerful new method for catalytic asymmetric construction of quaternary carbon stereocenters. *Sir:* Our laboratory recently initiated a program aimed at developing a polyene cyclization chemistry mediated by transition metals.^{1,2} A generalized spirocyclic example of

⁽¹³⁾ The major sulfone (stereochemistry unassigned) could be isolated by column chromatography **(3%** THF/hexanes; silica gel) for purposes of characterization. For synthetic purposes, the **2:l** mixture **was** em- ployed.

⁽¹⁴⁾ (a) Overberger, **C.** G.; Biletch, J.; Finestone, A. B.; Lilker, J.; Herbert, J. *J. Am. Chem. SOC.* **1943,** *75,* **2078.** (b) For a discussion of some properties of radical reactions important in synthesis", note: Walling, C. *Tetrahedron Symp.* **1985,41, 3887.**

⁽¹⁵⁾ Hart, **D. J.;** Seely, L. S. *J. Am. Chem. SOC.* **1988,** *110,* **1631. (16)** For the use of a free radical addition-fragmentation process for the construction of $\widehat{PGF}_{2\alpha}$ see: Keck, G. E.; Burnett, D. A. *J. Org. Chem.* **1987,52, 2958.**

⁽¹⁾ Abelman, **M. M.;** Overman, L. E. J. *Am. Chem. SOC.* **1988,** *110,* **2328.**